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Abstract
It is well known that some quantum and statistical fluctuations of a quantum
field may be recovered by adding suitable stochastic sources to the mean field
equations derived from the Schwinger–Keldysh (closed-time path) effective
action. In this paper we show that this method can be extended to
higher correlations and higher (n-particle irreducible) effective actions. As
an example, we investigate third- and fourth-order correlations by adding
stochastic sources to the Schwinger–Dyson equations derived from the 2-
particle irreducible effective action. This method is a simple way to investigate
the nonlinear dynamics of quantum fluctuations.

PACS numbers: 03.70.+k, 11.10.Wx

1. Introduction

Quantum fields fluctuate, and quantum fields out of equilibrium show both quantum and
statistical fluctuations [1]. In many problems of interest, the fluctuations are more relevant
than the mean fields themselves. Problems that come to mind are the generation of primordial
fluctuations during inflation [2–6], the fluctuations of soft fields induced by the interaction
with hard quanta [7–12] and the fluctuations of a Bose–Einstein condensate as described
by the stochastic Gross–Pitaievskii equation [13–19]. In such a case, one can try to obtain
information about the average behavior of the fluctuations by deriving equations of motion for
the fluctuation–fluctuation correlations, or else one may attempt to investigate the space-time
unfolding of the fluctuations by deriving suitable Langevin-like equations for them. In certain
cases, the Langevin approach is also an efficient way to derive the required self-correlations
[20].

In the simplest setup, one deals with a bosonic field theory. The Heisenberg field operators
are designed as �a

H . We use a DeWitt notation where a accounts for both discrete and space-
time indices; repeated indices are summed over the discrete ones and integrated over the
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continuous ones. The �a
H have expectation values

〈
�a

H

〉 = φa . If only the mean fields are
relevant, we may obtain causal equations of motion from them from the Schwinger–Keldysh
(or closed-time-path (CTP)) 1-particle irreducible (1PI) effective action (EA). Because the
Schwinger–Keldysh approach involves doubling the degrees of freedom, an extra discrete
index appears, and the fields become �A

H and φA. In the simplest representation, A = (i, a),
where i = 1, 2 shows in which branch of the CTP we are. Other representations are also
possible. The physical mean field equations, notwithstanding, are obtained from the CTP
equations by adding the constraints

φ1a = φ2a ≡ φa. (1)

If fluctuations are important, one may add noise terms to the physical mean field equations
of motion. The noise self-correlation is also derived from the 1PI CTP EA, more precisely
from terms that do not contribute to the mean field equations when the constraints (1) are
enforced (see the next section). The resulting theory is still good enough to derive exact
symmetric expectation values for the product of two quantum fields, that is, the Hadamard
propagator

Gab
1 = 〈{

�a
H ,�b

H

}〉 − 2φaφb (2)

and in this sense it is a nontrivial extension of the mean field theory. This basic framework
has extensively been used in cosmology (see [1]; some influential papers are [21–23]; see also
the reviews [24, 25]; for more recent work see [26–30]) and in the theory of Bose–Einstein
condensates. The important point of to which extent these fluctuations may be considered real
is discussed in [1]; for present purposes, it is enough to consider the stochastic approach as a
shortcut to the actual propagators.

Sometimes higher correlations are also important. For example, one may want to
compute the expectation value of the energy–momentum tensor (or the fluctuations thereof) in
an interacting bosonic field theory—that usually involves three- and four-point functions
[31–36]. Density–density correlations in a Bose–Einstein condensate are a four-point
correlation of the fundamental Heisenberg field; these are relevant, for example, when the
condensate is investigated through Bragg scattering [37–39]. One may need accurate higher
order correlations to enforce important Ward–Takahashi or Slavnov–Taylor identities [40, 41].
Or simply one may want to compute higher cumulants as a way of accounting for nonlinear
effects [42]. In this case, one of the most powerful computational tools is to obtain self-
consistent Schwinger–Dyson equations from variations of higher n-particle irreducible (nPI)
EAs where all required correlations appear on equal footing as independent variables [43–46].

There are both practical and fundamental reasons to wish to extend the stochastic approach
to field fluctuations to higher correlations as well [47, 48]. On the practical side, getting the
full fourth-order correlations from a stochastic approach to the 2PI EA may be more efficient
(or at least more heuristic) than computing the whole 4PI EA.

On the fundamental side, let us mention the following issue. It is well known that the 2PI
equations of motion for the propagators lead to the Kadanoff–Baym equations for the density
of states and one-particle distribution function, and eventually to the Boltzmann equation (or
similar) in the appropriate limit. However, it is also known that the Boltzmann equation is
only a mean field approximation to a stochastic equation, where the noise terms, in the near
equilibrium case, may be derived from the fluctuation–dissipation theorem. Of course, field
theory complies with the Kubo–Martin–Schwinger theorem, and therefore has the fluctuation–
dissipation theorem built in. So the noise terms in the stochastic Boltzmann equation must
correspond to some elements already present in the 2PI EA. The fundamental question is to
make those elements explicit. This issue was solved by Hu and one of us in [49]. Similar
issues appear at every order in the Schwinger–Dyson hierarchy.
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The stochastic approach to the 1PI CTP EA exploits special features of this EA (see
below) and is not readily generalizable to higher EAs. Similarly, the approach of Calzetta and
Hu in [49] is also ad hoc, in this case for the 2PI EA. A systematic framework, which could
be applied to any EA and to the symmetry broken or unbroken cases alike, would be highly
desirable, not least because of the light it sheds on the particular approaches devised for the
1PI and 2PI cases. Our aim in this paper is to develop such a uniform formalism.

The rest of the paper is organized as follows.
In the next section we study noise in the 1PI theory. We first show how one can associate

a CTP 1PI EA effective action to a problem defined in terms of a Langevin equation. We then
show that the 1PI EA for a quantum field theory problem has, under certain approximations,
the same structure as the EA arising from a stochastic problem. This allows the direct
identification of the equivalent stochastic problem to a given field theory. As an application,
we review the derivation of the Hadamard propagator of the full theory from the equivalent
stochastic equation.

In the following section we review the 2PI EA and two early attempts of a stochastic
formulation of the propagator dynamics [48, 49]. We show the shortcomings of these attempts
and how they differ from the proposal in this paper.

Finally we present a systematic approach to building stochastic equivalents for a given
field theory and apply it to the 1PI and 2PI cases. Although we shall not discuss it explicitly,
generalization to higher effective actions is straightforward. In the 2PI case, we finally obtain
the same result as in [49], but without the contrived arguments contained in that paper. We
show the basic oversight contained in [49], which obscured the simple derivation of the 2PI
noise presented here.

The paper ends with some brief final remarks.

2. Stochastic approach to the 1PI EA

The goal of this section is to provide a heuristic introduction to stochastic equations derived
from the 1PI EA. For a deeper discussion see [1, 50].

2.1. From Langevin equations to effective actions

To see why it is natural to translate a problem described in terms of an effective action into an
equivalent Langevin equation framework, let us first traverse the opposite road, that is, how
to associate a generating functional with a problem whose primary description is in terms of
a stochastic equation of motion.

We therefore assume we have a string of c-number fields �a
s obeying a system of equations

of the form [51–55]

Da[�s] = −qbF
b
a [�s], (3)

where Da and Fb
a are possibly nonlinear functionals and the qb are stochastic Gaussian variables

with zero mean and self-correlation 〈qbqc〉 = Qbc. To avoid the complexities associated with
nonlinear Langevin equations, we take this equation to mean that it is possible to write
�a

s = φa + ϕa , where φa is a solution of the homogeneous equation

Da[φ] = 0 (4)

and

Da,c[φ]ϕc = −qbF
b
a [φ], (5)

3
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where here and henceforth a comma denotes a functional derivative

Da,c ≡ δDa

δφc
. (6)

If there are no zero modes, this implies that the expectation value 〈ϕa〉 = 0, so within this
approximation we may say that φa is the expectation value of �a

s .
The generating functional for expectation values of the �a

s fields is

Z[J ] ≡ eiW [J ] =
∫

D�sDqQδ
(
�a

s − φa − Gab
retqcF

c
b [φ]

)
eiJd�d

s , (7)

where Gab
ret is the causal Green function for the operator Da,c, namely

Da,cG
cb
ret = −δb

a (8)

andQ is the Gaussian probability density functional of the q sources. The generating functional
obeys

W [0] = 0 (9)

W,a[0] = δW

δJa

∣∣∣∣
J=0

= φa. (10)

Shifting the �a
s fields by an amount φa , namely �a

s = φa + ϕa
+, we obtain

eiW [J ] = eiJdφd

∫
Dϕ+DqQδ

(
ϕa

+ − Gab
retqcF

c
b [φ]

)
eiJdϕd

+ . (11)

This may be rewritten as

eiW [J ] = eiJdφd

DetGret

∫
Dϕ+DqQδ

(
Da,cϕ

c
+ + qcF

c
a [φ]

)
eiJdϕd

+ . (12)

We now introduce an auxiliary field ϕ− to exponentiate the delta function

eiW [J ] = eiJdφd

DetGret

∫
Dϕ+Dϕ−DqQ eiϕa

−(Da,cϕ
c
++qcF

c
a [φ]) eiJdϕd

+ (13)

and perform the functional integral over the sources

eiW [J ] = eiJdφd

DetGret

∫
Dϕ+Dϕ− eiϕa

−Da,cϕ
c
+− 1

2 ϕa
−Nabϕ

b
− eiJdϕd

+ , (14)

where

Nab = QcdF
c
a [φ]Fd

b [φ]. (15)

This generating functional is the particular case, when J + = J and J− = 0, of the functional

eiW [J +,J−] = eiJ +
d φd

DetGret

∫
Dϕ+Dϕ− eiϕa

−Da,cϕ
c
+− 1

2 ϕa
−Nabϕ

b
− ei[J +

d ϕd
+ +J−

d ϕd
−]. (16)

Let us write

W [J +, J−] = J +
d φd + w[J +, J−] (17)

w[J +, J−] is obtained from a functional Fourier transform of a Gaussian functional, and as
such it is a quadratic function. It therefore obeys the Euler theorem

w[J +, J−] = 1
2

{
J +

d ϕ̄d
+ + J−

d φd
−
}
, (18)

where we have introduced two new background fields

4
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ϕ̄d
+ = δw

δJ +
d

(19)

φd
− = δw

δJ−
d

. (20)

The expectation value of the + field in the presence of non zero external sources is

φd
+ = δW

δJ +
d

= φd + ϕ̄d
+ . (21)

We can now compute the effective action as the Legendre transform of the generating
functional

�[φ+, φ−] = W [J +, J−] − {
J +

d φd
+ + J−

d φd
−
} = −1

2

{
J +

d ϕ̄d
+ + J−

d φd
−
}
. (22)

We have the identities

φa
−Da,d = −J +

d (23)

Dd,cϕ̄
c
+ + iNdbφ

b
− = −J−

d (24)

and therefore

�[φ+, φ−] = φa
−Da,d ϕ̄

d
+ +

i

2
φd

−Ndbφ
b
− (25)

or else, adding Da[φ] = 0

�[φ+, φ−] = φa
−Da[φ+] +

i

2
φd

−Ndb[φ+]φb
−. (26)

This shows how we can associate an effective action with a Langevin-type equation.
We finally mention the self-correlation for the ϕa fields. Since we have the explicit

representation ϕa = Gab
retqcF

c
b we obtain

〈ϕaϕb〉 ≡ Gab
s = Gac

retF
d
c Gbe

retF
f
e Qdf = Gac

retG
be
retNce. (27)

2.2. From effective actions to Langevin equations

Let us now investigate a scalar field theory described by the Heisenberg operators �a
H . The

fields have one- and two-particle expectation values〈
�a

H

〉 = φa (28)〈
�a

H�b
H

〉 = φaφb + Gab. (29)

These expectation values cannot be derived either from the Euclidean generating functional
or its analytic continuation to Minkowski space, which generate IN–OUT matrix elements
instead [1]. To find a suitable generating functional, we must consider two external sources
JA = (J 1a, J 2a) and introduce the Schwinger–Keldysh or closed time-path (CTP) 1-particle-
irreducible (1PI) generating functional W1PI[JA] as

Z1PI[J ] = eiW1PI[J ] = 〈(
T̃

[
e−iJ 2

a �a
H

])(
T

[
eiJ 1

b �b
H

])〉
, (30)

where T (T̃ ) means (anti) temporal ordering. We may now derive the expectation value

φa = δW1PI

δJ 1
a

∣∣∣∣
J 1=J 2=0

. (31)
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More generally, we may consider the expectation value of the Heisenberg operator driven by
an external source Ja . This is

φa = δW1PI

δJ 1
a

∣∣∣∣
J 1=J 2=J

. (32)

Even more generally, we may consider this as the theory of a field doublet �A = (�1a,�2a)

coupled to sources JA = (J1a = J 1a, J2a = −J 2a) (observe that lowering or raising a 2 index
involves a sign change). In this theory we have two background fields

φA = δW1PI

δJA

≡ W
,A
1PI (33)

but the physical situation is when

φa
− = φ1a − φ2a = 0. (34)

When this obtains, then

φa
+ = 1

2 (φ1a + φ2a) = φa (35)

is the physical expectation value
The 1PI effective action is the Legendre transform

�1PI[φ
A] = W1PI − JAφA. (36)

Therefore,

�1PI,A = δ�1PI

δφA
= −JA. (37)

The 1PI CTP EA can be written generically as [1]

�[φ−, φ+] = φa
−Da[φ+] +

i

2
φa

−Nab[φ+]φb
− + · · · , (38)

where the ellipsis means terms of higher order in φ−. Here D (N) is the so-called dissipation
(noise) kernel. This is of course identical in form to the effective action for a stochastic
theory (26), and thereby we may write the equivalent Langevin equation

Da[�s] = −ξ̃a, (39)

where the ξ̃a are Gaussian stochastic sources with zero mean and self-correlation〈
ξ̃a ξ̃b

〉 = Nab. (40)

2.3. Full Hadamard propagator from the stochastic 1PI approach

As an application of the stochastic 1PI approach we shall show that the two-point function
for the stochastic theory (27) is identical to half the Hadamard propagator of the full quantum
theory.

The full quantum propagators may be derived from the 1PI generating functional as

GAB = −i
δ2W1PI

δJAδJB

≡ −iW,AB
1PI . (41)

From the properties of the Legendre transform we have

�1PI,ABWBC
1PI, = −δC

A (42)

whereby

�1PI,ABGBC = iδC
A. (43)

6
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In the A = (α, a) representation, where α = ±, we find

�1PI,(α,a) =
(

φc
−

[
Dc,a + i

2 Ncb,aφ
b
−
]

Da[φ+] + iNabφ
b
−

)
. (44)

And therefore the Hessian, evaluated at the physical point φc
− = 0 is

�1PI,(α,a),(β,b) =
(

0 Db,a

Da,b iNab

)
. (45)

We also identify

G(α,a),(β,b) =
(

1
2Gab

1 −iGab
ret

−iGab
adv 0

)
, (46)

where Gab
ret is the retarded propagator, Gab

adv = Gba
ret is the advanced propagator, and Gab

1 is the
Hadamard propagator

Gab
1 = 〈{

�a
H ,�b

H

}〉
. (47)

The equations for the propagators become

(
0 Db,a

Da,b iNab

)(
1
2Gbc

1 −iGbc
ret

−iGbc
adv 0

)
= i

(
δc
a 0

0 δc
a

)
(48)

namely

Da,bG
bc
ret = −δc

a

Db,aG
bc
adv = −δc

a (49)

Da,bG
bc
1 = −2NabG

bc
adv.

This last equation shows that indeed G1 is twice the stochastic propagator Gab
s defined in

equation (27).

2.4. Remarks

In this section we have shown that the 1PI EA derived from a quantum field theory, cut off
at terms quadratic in the difference field φ−, is identical in the form to the effective action
derived from a suitable Langevin equation. This allows us, for example, to compute the full
Hadamard function from the stochastic approach.

It would be desirable to extend this equivalence to higher correlations, and to this effect
we may wish to find stochastic equivalents to the higher effective actions to be introduced in
the next section. However, the stochastic approach as presented above relies heavily on the
representation (38) for the 1PI EA. The structure of the 1PI EA is not replicated in the higher
effective actions (except under restrictive conditions on the propagators, see [48]) and so this
method fails in general.

In the following we shall present an alternative derivation of the stochastic approach which
does not rely on any particular feature of the 1PI EA, and therefore it is readily generalized to
higher effective actions. As a first step, we shall briefly introduce the 2PI effective action.

7
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3. The 2PI EA and early stochastic formulations

3.1. The 2PI EA

The 1PI generating functional introduced in the last section admits a path integral
representation in terms of fields defined on the closed time path

eiW1PI[JA] =
∫

D�A ei[S[�A]+JA�A], (50)

where S[�A] = S[�1] − S[�2]∗ is the classical closed time-path action. In the 2PI theory we
add nonlocal sources KAB coupled to (1/2)�A

H �B
H . Thus the CTP 2PI generating functional

is

eiW [JA,KAB ] =
∫

D�A ei[S[�A]+JA�A+ 1
2 KAB�A�B ]. (51)

The first and second derivatives of the 2PI generating potential W read

W,A = φA (52)

W,(AB) = 1

2
[φAφB + GAB] (53)

W,AB = iGAB (54)

W,A(BC) = i

2

[〈
�A

H�B
H�C

H

〉 − φA(φBφC + GBC)
]

(55)

W,(AB)(CD) = i

4

[〈
�A

H�B
H�C

H�D
H

〉 − (φAφB + GAB)(φCφD + GCD)
]
. (56)

Observe that in these equations we write

W,(AB) = δW

δKAB

(57)

to distinguish it from

W,AB = δ2W

δJAδJB

. (58)

The 2PI CTP EA is the full Legendre transform

� = W − JAφA − 1
2KAB[φAφB + GAB]. (59)

Therefore the mean field equations of motion are

�,A = −JA − KABφB (60)

�,(AB) ≡ δ�

δGAB
= −1

2
KAB. (61)

One further variation yields the identities

[�,AC − 2�,(AC)]φ
C,E + �,A(CD)G

CD,E = −δE
A (62)

[�,AC − 2�,(AC)]φ
C,(EF) + �,A(CD)G

CD,(EF) = −δ
(EF)

(AB)φ
B (63)

�,(AB)CφC,E + �,(AB)(CD)G
CD,E = 0 (64)

�,(AB)CφC,(EF) + �,(AB)(CD)G
CD,(EF) = − 1

2δ
(EF),

(AB) (65)

8
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where δ
(EF)

(AB) stands for the symmetrized identity operator

δ
(EF)

(AB) = 1
2

{
δE
AδF

B + δF
AδE

B

}
. (66)

We now write the derivatives of the mean fields in terms of correlations

φC,E = W,CE = iGCE (67)

φC,(EF) = W,C(EF) = i

2

[〈
�C

H�E
H�F

H

〉 − φC(φEφF + GEF )
]

(68)

GCD,E = 2W,(CD)E − φC,EφD − φD,EφC

= i
[〈
�C

H�D
H�E

H

〉 − φEφCφD − φEGCD − φCGDE − φDGCE
]

(69)

GCD,(EF) = 2W,(CD)(EF) − φC,(EF)φD − φD,(EF)φC

= i

2

{〈
�C

H�D
H�E

H�F
H

〉 − (φCφD + GCD)(φEφF + GEF )

− φD
[〈
�C

H�E
H �F

H

〉 − φC(φEφF + GEF )
]

− φC
[〈
�D

H �E
H�F

H

〉 − φD(φEφF + GEF )
]}

. (70)

This last equation may be rewritten as

GCD,(EF) = i

2

{〈
�C

H�D
H�E

H�F
H

〉 − φD
〈
�C

H�E
H�F

H

〉 − φC
〈
�D

H�E
H �F

H

〉
− (−φCφD + GCD)(φEφF + GEF )

}
(71)

and further

−2iGCD,(EF) = 〈
�C

H�D
H�E

H�F
H

〉 − φCφDφEφF − φCφDGEF − φCφEGDF − φCφF GDE

−φDφEGCF − φDφF GCE − φEφF GCD + iφCGEF,D + iφDGEF,C. (72)

We also notice the identity

−2iφC,(EF) = −iGCE,F + φEGCF + φF GCE. (73)

3.2. Early stochastic formulations

As we have said in the introduction, it has been known for a long time that the Boltzmann
equation is just a mean field equation, and can be improved by upgrading it to a full Langevin-
type equation where particle number fluctuations are explicitly included. Since from the point
of view of field theory the Boltzmann equation is just a particular limit of the Kadanoff–Baym
equations, which are in turn equivalent to the Schwinger–Dyson equations [1], it is natural to
seek a corresponding stochastic generalization of the latter. In this subsection we shall review
two early attempts in this direction and point out their shortcomings. The proper stochastic
formulation shall be presented in the next section.

As we have said in section II, the peculiar structure of the 1PI EA allows one to associate
with a field theory problem an equivalent Langevin equation, whereby, for example, the
Hadamard propagator may be obtained as a stochastic average. One possible strategy is to try
to cast the 2PI EA in a similar framework. This line of thought is pursued in [48]. Success is
found only under special, and restrictive, assumptions on the structure of the propagators, and
therefore it is unsuitable as a general foundation for the formalism.

In [49] the same authors follow a different strategy, which may be regarded as a
nonequilibrium generalization of the fluctuation–dissipation theorem. We shall consider here

9
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only the case of a field theory with no background mean fields. The general case will be
discussed in the next section.

We assume there are stochastic kernels GAB
s = GAB + γ AB such that the stochastic

averages of these kernels reproduce the quantum averages of products of the composite
operator �A

H�B
H . These kernels obey the Langevin equation

�,(AB) [Gs] = −1

2
κAB. (74)

After linearization, this becomes

�,(AB)(CD)γ
CD = −1

2
κAB. (75)

We have two ways of computing the self-correlation for the stochastic kernels. By
assumption 〈

GAB
s GCD

s

〉 = 〈
�A

H�B
H�C

H�D
H

〉 = GABGCD − 4iW,(AB)(CD) (76)

while from the explicit solution of the linearized equations we obtain〈
GAB

s GCD
s

〉 = GABGCD + 〈γ ABγ CD〉
= GABGCD +

1

4
[�,(AB)(EF)]

−1[�,(CD)(GH)]
−1〈κEF κGH 〉. (77)

Asking both computations to agree we obtain

〈κIJ κKL〉 = −16i�,(IJ )(AB)�,(KL)(CD)W
,(AB)(CD) = 4i�,(IJ )(KL) (78)

As we shall see in the next section, this is the correct result. However, the authors of [49]
provide some contrived argument to the effect that the sign of the last term in equation (78)
ought to be changed. These arguments would be unconvincing, except the sign reversal seems
to be necessary to derive the correct noise term for the Boltzmann–Langevin equation in the
kinetic theory limit.

This seeming paradox demands clarification, which will be provided in the next section.

4. A systematic Langevin approach

4.1. A systematic Langevin approach to mean field dynamics

So far in this paper we have seen two different strategies to associate an equivalent stochastic
equation to a field theory problem. The approach of section 2 depends upon the formal analogy
between the 1PI EA for the quantum and stochastic problems. This approach is straightforward
for the 1PI theory, but it is not easily generalizable to higher effective actions. The approach
of section 3 assumes there is an equivalent stochastic description, where the noise is whatever
it needs to be to sustain the proper fluctuations. In this sense, it is a generalized fluctuation–
dissipation kind of argument. This approach works for any effective action, but seems to
be subject to a sign ambiguity. In this section we shall develop this second approach in a
systematic way, dispelling the apparent paradox afflicting the discussion in [49].

Let us reformulate the 1PI problem in terms of the fluctuation–dissipation inspired
approach. To derive the Langevin-like approach, we write equation (37) for a stochastic
c-number CTP field variable �A

s coupled to a stochastic source ξ 1PI
A . We assume the solution

takes the form

�A
s = φA + ϕA, (79)

where the displacements ϕA account for both the quantum and statistical fluctuations

〈ϕAϕB〉 = GAB. (80)

10
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In the linearized regime, we obtain

�1PI,ABϕB = −ξ 1PI
A (81)

We find

ϕB = iGBCξ 1PI
C (82)

〈ϕAϕB〉 = −GACGBD
〈
ξ 1PI
C ξ 1PI

D

〉
(83)

so we require, using that GBD = GDB〈
ξ 1PI
C ξ 1PI

D

〉
GDB = −δB

C , (84)

that is 〈
ξ 1PI
C ξ 1PI

D

〉 = i�1PI,CD. (85)

It is important to stress the differences between this approach and that of section 2. In section 2
there was only one stochastic source coupled to the stochastic condensate field. In the new
approach of this section, the number of stochastic sources has been doubled.

Other way to express the same concept is to observe that the constraint φ− = 0 which
characterizes physical mean field configurations is violated in our stochastic formulation. The
formal stochastic equations for the fluctuations read

ϕ−bDb,a = −ξ 1PI
+a Da,bϕ

+b + iNabϕ
−b = −ξ 1PI

−a (86)

The first equation yields

ϕ−b = Gbc
advξ

1PI
+c . (87)

We can now eliminate ϕ−b and obtain a single stochastic equation for ϕ+b. The question arises
if this single equation is the same as derived in section 2. This requires we identify

ξ̃a = ξ 1PI
−a + iNabG

bc
advξ

1PI
+c . (88)

Now we have
〈
ξ 1PI
−a ξ 1PI

−b

〉 = −Nab,
〈
ξ 1PI
−a ξ 1PI

+b

〉 = iDa,b and
〈
ξ 1PI

+a ξ 1PI
+b

〉 = 0, so the above
identification implies

〈ξ̃a ξ̃b〉 = −Nab − NbdG
dc
advDa,c − NadG

dc
advDb,c = Nab (89)

as expected. After the auxiliary field ϕ−b has been integrated out, both stochastic formulations
are equivalent.

4.2. The stochastic 2PI theory

One advantage of the new formalism is that it can be trivially generalized to higher effective
actions. Let us consider again the 2PI theory.

This time we shall consider the general case where symmetry may be broken. To this end
we write as before �A

s = φA + ϕA, but now we also write a stochastic representation for the
composite operator

(
�A

H − φA
) (

�B
H − φB

)
. In the stochastic theory this composite operator

is represented by a stochastic c-number kernel GAB
s = GAB + γ AB . We assume the identity

�A
s �B

s = φAφB + GAB + φAϕB + ϕAφB + γ AB. (90)

The required expectation values are〈
�C

H�E
H

〉 = φCφE + 〈ϕCϕE〉 (91)

〈
�C

H�D
H�E

H

〉 = 〈
�C

H

(
�D

H�E
H

)〉
= φCφDφE + φCGDE + φDGCE + φEGCD + 〈ϕCγ DE〉. (92)

11
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Observe that this implies that 〈ϕCγ DE〉 is totally symmetric.〈
�C

H�D
H�E

H�F
H

〉 = 〈(
�C

H�D
H

) (
�E

H�F
H

)〉
= (φCφD + GCD)(φEφF + GEF )

+ φC[φEGDF + φF GDE + 〈ϕDγ EF 〉]
+ φD[φEGCF + φF GCE + 〈ϕCγ EF 〉]
+ φE〈ϕF γ CD〉 + φF 〈ϕEγ CD〉 + 〈γ CDγ EF 〉. (93)

We can now relate the derivatives of the mean fields with respect to the sources to stochastic
averages

φC,E = i〈ϕCϕE〉 (94)

GCD,E = i〈ϕCγ DE〉 (95)

φC,(EF) = i

2
{〈ϕCγ EF 〉 + φEGCF + φF GCE} (96)

GCD,(EF) = i

2
{φE〈ϕF γ CD〉 + φF 〈ϕEγ CD〉 + 〈γ CDγ EF 〉}, (97)

whereby we get the identities

[�,AC − 2�,(AC)]〈ϕCϕE〉 + �,A(CD)〈γ CDϕE〉 = iδE
A (98)

[�,AC − 2�,(AC)]{〈ϕCγ EF 〉 + φEGCF + φF GCE}
+ �,A(CD){φE〈ϕF γ CD〉 + φF 〈ϕEγ CD〉 + 〈γ CDγ EF 〉} = 2iδ(EF)

(AB)φ
B (99)

which reduces to

[�,AC − 2�,(AC)]〈ϕCγ EF 〉 + �,A(CD)〈γ CDγ EF 〉 = 0 (100)

�,(AB)C〈ϕCϕE〉 + �,(AB)(CD)〈γ CDϕE〉 = 0 (101)

�,(AB)C〈ϕCγ EF 〉 + �,(AB)(CD)〈γ CDγ EF 〉 = i

2

{
δE
AδF

B + δF
AδE

B

}
. (102)

Assuming the mean field equation �,(AC) = 0 these equation suggest a stochastic dynamics
for the ϕ, γ fields

�,ACϕC + �,A(CD)γ
CD = −ξA (103)

Observe that a possible term κABφB is absent,

�,(AB)CϕC + �,(AB)(CD)γ
CD = −1

2
κAB (104)

provided

〈ξAϕE〉 = −iδE
A (105)

〈ξAγ CD〉 = 0 (106)

〈κABϕE〉 = 0 (107)

〈κABγ EF 〉 = −i
{
δE
AδF

B + δF
AδE

B

}
. (108)

Multiplying the Langevin equations by the sources and using these expectation values, we
obtain

〈ξAξB〉 = i�,AB (109)

〈ξAκCD〉 = 2i�,A(CD) (110)

〈κCDκAB〉 = 4i�,(AB)(CD). (111)

12
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4.3. Recovery of the 1PI stochastic theory from the 2PI one

Let us check that the 2PI and 1PI theories agree as far as the mean field fluctuations
are concerned. This must be true, as the 2PI theory is built around the requirement that
〈ϕAϕB〉 = GAB.

The 1PIEA �1PI is recovered from the 2PIEA � as

�1PI[φ] = �[φ,G0[φ]], (112)

where the correlations G0 are slaved to the mean field through

�,(AB)[φ,G0[φ]] = 0. (113)

One further derivative shows that

GCD
0,E = −[�,(AB)(CD)]

−1�,(AB)E. (114)

Therefore the first and second derivatives of the 1PIEA are

�1PI,A[φ] = �,A (115)

�1PI,AB[φ] = �,AB + �,A(CD)G
CD
0,B . (116)

The stochastic equation for the mean field fluctuations, as derived from the 1PIEA, is simply
equation (81) with noise self-correlation (85). Now equation (104) admits the solution

γ CD = GCD
0,EϕE − 1

2 [�,(AB)(CD)]
−1κAB. (117)

Using this into equation (103) we get back equation (81) provided we identify

ξ 1PI
A = ξA + 1

2GCD
0,AκCD. (118)

Indeed, both expressions have the same self-correlation.

4.4. Stochastic equations for the physical propagators

Finally, let us recover the noise self-correlation given in [49]. The situation is similar to the
one in the 1PI theory. In the 1PI theory, the φ− field vanishes identically on-shell. However,
in the stochastic approach we assign a nontrivial source ξ 1PI

− to it. It is by eliminating this
auxiliary field that we recover the usual approach, with a single stochastic source ξ̃ whose
self-correlation is given by the noise kernel.

Similarly, in the quantum field theory problem the correlator G−− = 〈ϕ−ϕ−〉 vanishes
identically, as a result of path ordering. However, in the stochastic approach, we consider it
as an auxiliary field and couple a source to it. The authors of [49] failed to recognize the
violation of the constraint G−− = 0, but compensated this oversight by forcing a sign change
in their expression for the noise self-correlation. In the context of the proper theory, this sign
change is due to the elimination of the auxiliary field G−−, keeping only the physical degrees
of freedom.

For simplicity, and as in [49], let us assume a symmetric scalar field theory, meaning that
the background fields vanish and also �,A(BC) = 0. Then the 2PI EA can be written as

� = 1

2
SABGAB − i

2
Tr Ln [G] + �Q. (119)

The first derivatives of the 2PI CTP EA yield the mean field equations of motion

SAB − iG−1
AB + 2�Q,(AB) = 0 (120)

we shall call GAB the on-shell propagators. We adopt the (±, a) indices, as before. In this
representation, we have the identifications equation (46) and (48). We now replace the generic

13



J. Phys. A: Math. Theor. 42 (2009) 265401 E Calzetta

kernels GAB by the stochastic kernels Gs
AB = GAB + γ AB and expand the effective action to

second order. For simplicity, we only keep linear terms in �Q. We show in [49] that this is
enough to study the fluctuation terms in the kinetic field theory limit. The relevant quadratic
terms in the effective action are

�(2) = i

4
Tr[G−1γ ]2, (121)

where as in equation (48)

G−1 =
(

0 −iDb,a

−iDa,b Nab

)
, (122)

therefore

G−1γ =
(

−iDb,aγ
(−b)(+c) −iDb,aγ

(−b)(−c)

−iDa,bγ
(+b)(+c) + Nabγ

(−b)(+c) −iDa,bγ
(+b)(−c) + Nabγ

(−b)(−c)

)
(123)

and

�(2) = −i

4
{Db,aγ

(−b)(+c)Dd,cγ
(−d)(+a) + 2Db,aγ

(−b)(−c)[Dc,dγ
(+d)(+a) + iNcdγ

(−d)(+a)]

+ [Da,bγ
(+b)(−c) + iNabγ

(−b)(−c)][Dc,dγ
(+d)(−a) + iNcdγ

(−d)(−a)]}. (124)

The stochastic equations for the propagators are

−i

2
Db,a[γ (−b)(+c)Dd,c + iγ (−b)(−c)Ncd ] = −1

2
κ(−d)(+a) (125)

−i

2
[Da,bγ

(+b)(−c) + iNabγ
(−b)(−c)]Dc,d = −1

2
κ(+d)(−a) (126)

−i

2
{Db,a[Dc,dγ

(+d)(+a) + iNcdγ
(−d)(+a)] + iNab[Dc,dγ

(+d)(−a) + iNcdγ
(−d)(−a)]} = −1

2
κ(−b)(−c)

(127)
−i

2
Db,aγ

(−b)(−c)Dc,d = −1

2
κ(+d)(+a). (128)

This last equation implies

γ (−b)(−c) = −iGcd
advG

ba
advκ(+d)(+a) (129)

Observe that γ (−b)(−c) is not zero in the equivalent stochastic problem. The equations for the
physical stochastic propagators are obtained eliminating γ (−b)(−c) throughout. For example,
for the fluctuations in the Hadamard propagator we obtain

Dc,dγ
(+d)(+a)Db,a + iNcdγ

(−d)(+a)Db,a + iDc,dγ
(+d)(−a)Nab = −iκ̃(−b)(−c), (130)

where

κ̃(−b)(−c) = κ(−b)(−c) + iNcdγ
(−d)(−a)Nab

= κ(−b)(−c) + NceG
f d

advG
ea
advNf bκ(+d)(+a). (131)

From the self-correlations of the original sources

〈κ(−b)(−c)κ(−d)(−a)〉 = −2NabNcd (132)

〈κ(−b)(−c)κ(+d)(+a)〉 = 2Db,aDc,d (133)

〈κ(+b)(+c)κ(+d)(+a)〉 = 0, (134)

we obtain

〈κ̃(−b)(−c)κ̃(−d)(−a)〉 = 2NabNcd (135)

which agrees with [49]. Observe that in going from equation (132) to equation (135) the sign
of the right-hand side has changed. Thus we obtain the sign change enforced in [49], whose
origin is now clear.
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5. Final remarks

In this paper we have presented a systematic stochastic approach which allows one to build
Langevin-like generalizations of the Schwinger–Dyson equations of an interacting quantum
field theory. The resulting fluctuations account both for quantum and statistical fluctuations.

It is hoped that the present approach will prove clearer and easier to apply than existing
alternatives in the literature. Quantum and statistical fluctuations are increasingly under
scrutiny in fields that range from cosmology to Bose–Einstein condensates. We expect the
tool we have presented in this paper will prove valuable in this endeavor.
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